Topology Problem Sheet 7

Deadline: 11 June 2024, 15h

Exercise 1 (6 Points).

Let $f: X \to Y$ be a continuous map between topological spaces.

- a) Show with an explicit example that the preimage of a compact subset K of Y need not be compact in X.
- b) Assume now that f is closed and surjective. If U is an open subset containing the fiber $f^{-1}(\{y\})$ for some $y \in K$, show that f(U) contains an open neighborhood of y.
- c) Assume now that f is closed, surjective and that for every y in Y the fiber $f^{-1}(\{y\})$ is a compact subset of X. Show that for any compact subset K of Y the preimage $f^{-1}(K)$ is compact in X.

Exercise 2 (4 Points).

Let X be the topological space $(\mathbb{C}, \mathcal{T}_{cofin})$ of the complex numbers equipped with the cofinite topology.

- a) Is X sequentially compact?
- b) Is X a limit-point compact space?

Exercise 3 (4 Points). Consider the topology \mathcal{T} on \mathbb{R} generated by the half-rays $(a, +\infty)$ with a in \mathbb{R} .

- a) Determine whether it is finer or coarser than the euclidean topology. Is it T_1 ?
- b) Show that $(\mathbb{R}, \mathcal{T})$ is first-countable. Is it also second-countable?
- c) Show that this topological space is limit-point compact.
- d) Does the sequence $\{-n\}_{n\in\mathbb{N}}$ have a convergent subsequence?

Exercise 4 (6 Points).

Let (X, \mathcal{T}) be a topological space.

- a) If the path α and β are homotopic, then show that the path $\alpha \star \gamma$ and $\beta \star \gamma$ are also homotopic for any path γ such that $\gamma(0) = \alpha(1) = \beta(1)$.
- b) Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$ be the *punctured plane* with the subspace topology from euclidean plane. Consider a loop α based at $x_0 = (1,0)$ such that the *x*-coordinate of α is always non-negative. Show that α is homotopic to the constant loop C_{x_0} .

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im entsprechenden Fach im Keller des mathematischen Instituts.